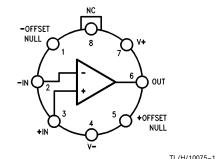
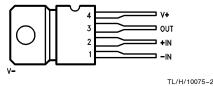


LM759/LM77000 Power Operational Amplifiers

General Description

The LM759 and LM77000 are high performance operational amplifiers that feature high output current capability. The LM759 is capable of providing 325 mA and the LM77000 providing 250 mA. Both amplifiers feature small signal characteristics that are better than the LM741. The amplifiers are designed to operate from a single or dual power supply with an input common mode range that includes the negative supply. The high gain and high output power provide superior performance. Internal current limiting, thermal shutdown, and safe area compensation are employed making the LM759 and LM77000 essentially indestructible.


Features


- Output current
 - LM759—325 mA minimum LM77000—250 mA minimum
- Internal short circuit current limiting
- Internal short circuit current limiting
 Internal thermal overload protection
- Internal output transistors safe-area protection
- Internal output transitions sale-rated protection
 Input common mode voltage range includes ground or negative supply

Applications

- Voltage regulators
- Audio amplifiers
- Servo amplifiers
- Power drivers

Connection Diagrams and Ordering Information



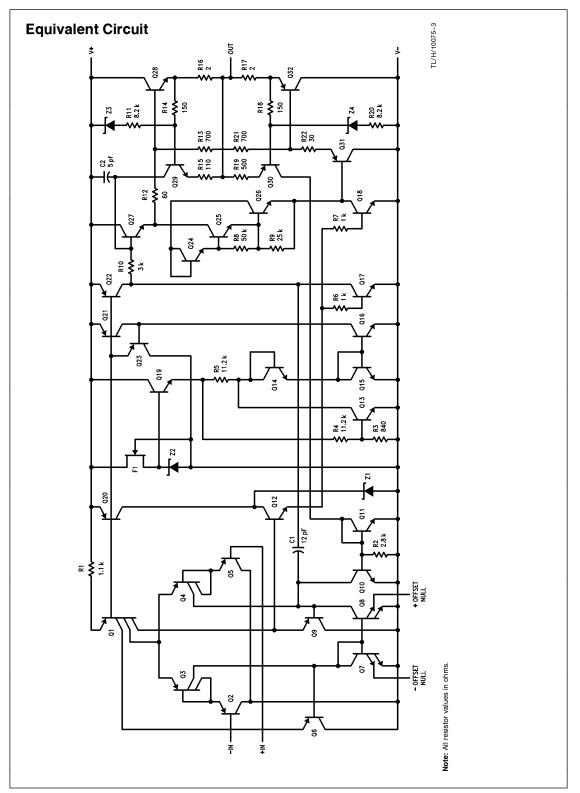
Top View

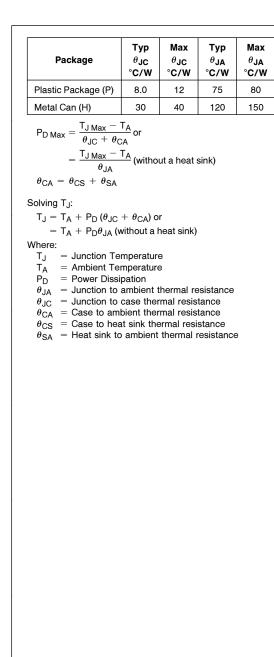
Order Number LM759CP or LM77000CP See NS Package Number P04A

Lead 4 connected to case.

Top View Order Number LM759MH, LM759CH or LM759H/883 See NS Package Number H08C

RRD-B30M115/Printed in U. S. A.

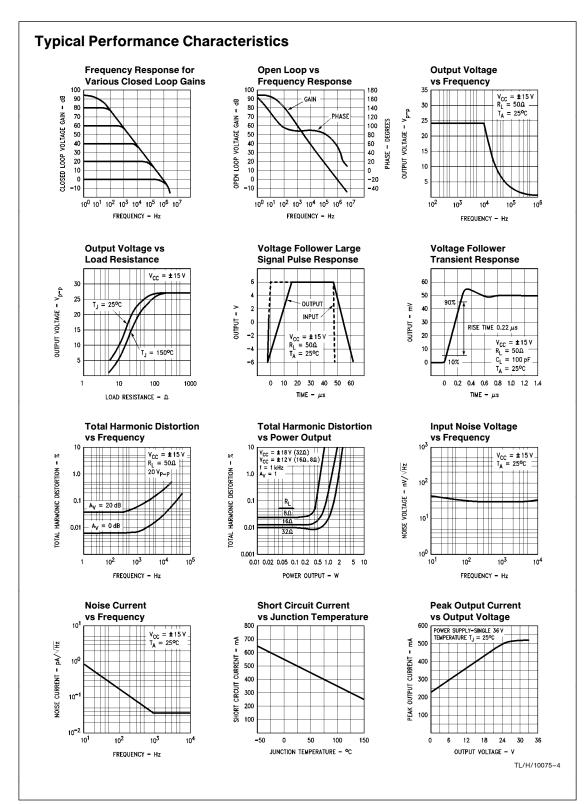

LM759/LM77000 Power Operational Amplifiers

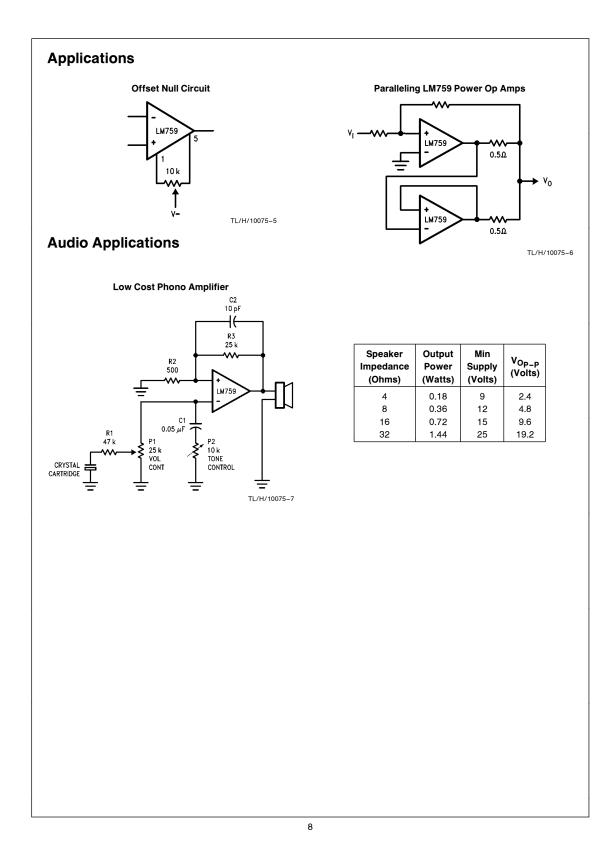

November 1994

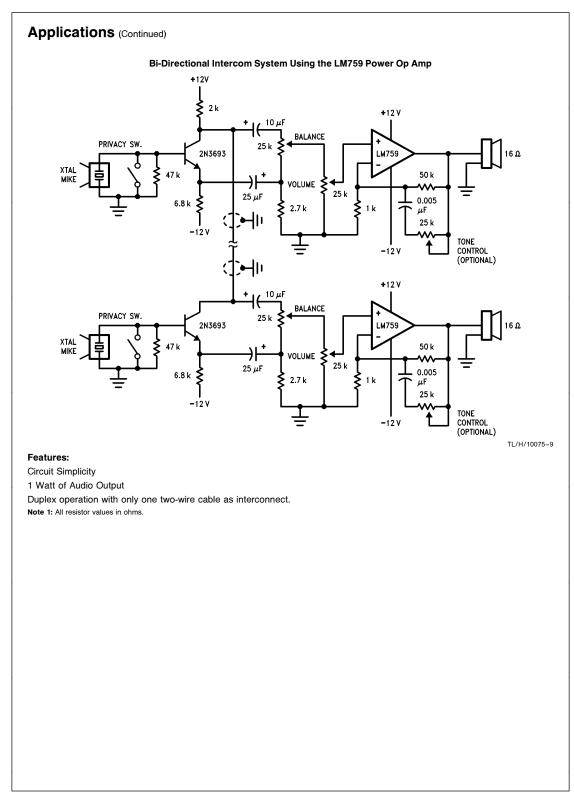
please Office/I Storage Metal Plastic Operatir Militar Comm Lead Te Metal Plastic	c Package ng Junction Temperature y (LM759M) nercial (LM759C, LM770 emperature Can (soldering, 60 sec) c Package (soldering, 10 5 9	al Semicond bility and spe -65 -65 e Range -55 000C) 0 0 sec)	luctor Sales Sup cifications. Diffe	rnal Power Dissipation ply Voltage erential Input Voltage It Voltage (note 2)		ernally L	±18V 30V ±15V
Symbol	Parameter		Conditions	Min	Тур	Max	Units
V _{IO}	Input Offset Voltage		$R_S \le 10 \text{ k}\Omega$		1.0	3.0	mV
IIO	Input Offset Current				5.0	30	nA
IIB	Input Bias Current				50	150	nA
ZI	Input Impedance			0.25	1.5		MΩ
ICC	Supply Current				12	18	mA
V _{IR}	Input Voltage Range			V+ - 2V to V-	$V^+ - 2V$ to V^-		v
los	Output Short Circuit Current		$ V_{CC} - V_{O} = 30V$		±200		mA
IO PEAK	Peak Output Current		$3.0V \le V_{CC} - V_0 \le 10^{\circ}$	√ ±325	±500		mA
Avs	Large Signal Voltage Gain		$R_L \ge 50\Omega, V_O = \pm 10V$		200		V/mV
TR	Transient Response	Rise Time	$R_{L} = 50\Omega, A_{V} = 1.0$		300		ns
		Overshoot			5.0		%
SR	Slew Rate		$R_{L} = 50\Omega, A_{V} = 1.0$		0.6		V/µs
BW	Bandwidth		$A_V = 1.0$		1.0		, MHz
The follo	wing specifications appl	y for $-55^{\circ}C \le$					
V _{IO}	Input Offset Voltage		$R_S \le 10 \text{ k}\Omega$			4.5	mV
lio	Input Offset Current					60	nA
I _{IB}	Input Bias Current					300	nA
CMRR	Common Mode Rejection Ratio		$R_S \le 10 \text{ k}\Omega$	80	100		dB
PSRR	Power Supply Rejection Ratio		$R_S \le 10 \text{ k}\Omega$	80	100		dB
	Large Signal Voltage Gain		$R_L \ge 50\Omega, V_O = \pm 10V$	25	200		V/mV
A _{VS}	Output Voltage Swing		$R_1 = 50\Omega$	±10	± 12.5		v

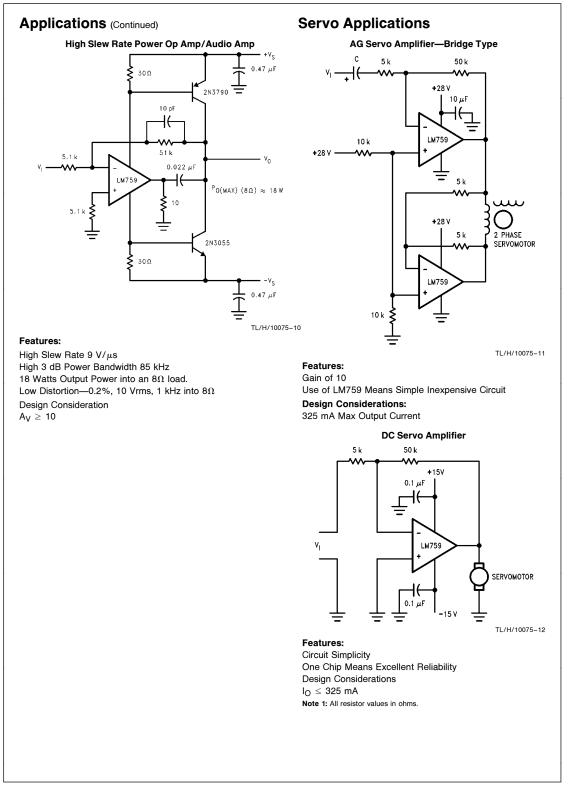
Symbol	Paramete	r	Conditions	Min	Тур	Max	Units
V _{IO}	Input Offset Voltage		${\sf R}_{\sf S} \le$ 10 k Ω		1.0	6.0	mV
0	Input Offset Current				5.0	50	nA
IB	Input Bias Current				50	250	nA
ZI	Input Impedance			0.25	1.5		MΩ
cc	Supply Current				12	18	mA
V _{IR}	Input Voltage Range			V^+-2V to V^-	V^+ $-$ 2V to V^-		v
los	Output Short Circuit C	urrent	$ V_{CC}-V_O = 30V$		±200		mA
O PEAK	Peak Output Current		$3.0V \leq \left V_{CC}V_{O}\right \leq 10V$	±325	±500		mA
A _{VS}	Large Signal Voltage	Gain	$\text{R}_{\text{L}} \geq 50 \Omega, \text{V}_{\text{O}} = ~\pm 10 \text{V}$	25	200		V/m
TR	Transient Response	Rise Time	$R_L = 50\Omega, A_V = 1.0$		300		ns
		Overshoot			10		%
SR	Slew Rate		$R_L = 50\Omega, A_V = 1.0$		0.5		V/μ۹
BW	Bandwidth		A _V = 1.0		1.0		MHz
The follow	wing specifications apply	$\sqrt{10^{\circ}}$ for 0° < T $\sqrt{10^{\circ}}$	< +125℃				
V _{IO}	Input Offset Voltage		$R_{S} \le 10 \text{ k}\Omega$			7.5	mV
10	Input Offset Current					100	nA
IB	Input Bias Current					400	nA
CMRR	Common Mode Rejection Ratio		$R_{S} \le 10 \text{ k}\Omega$	70	100		dB
PSRR	Power Supply Rejection Ratio		$R_{S} \le 10 \text{ k}\Omega$	80	100		dB
A _{VS}	Large Signal Voltage Gain		$R_L \ge 50\Omega, V_O = \pm 10V$	25	200		V/m\
V _{OP}	Output Voltage Swing		$R_L = 50\Omega$	±10	±12.5		v

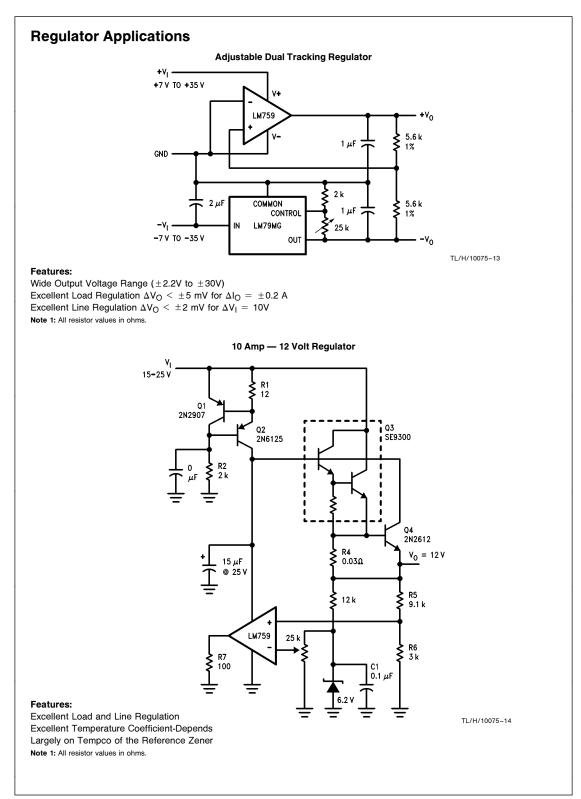
Symbol	Paramete	rical Characteristics T _J = 2 Parameter		Min	Тур	Мах	Unit
V _{IO}	Input Offset Voltage		$R_{S} \le 10 \ k\Omega$		1.0	8.0	mV
IIO	Input Offset Current				5.0	50	nA
I _{IB}	Input Bias Current				50	250	nA
ZI	Input Impedance			0.25	1.5		MΩ
ICC	Supply Current				12	18	mA
V _{IR}	Input Voltage Range			+ 13 to V-	+ 13 to V-		v
los	Output Short Circuit Ci	irrent	$ V_{CC} - V_{O} = 30V$		±200		mA
IO PEAK	Peak Output Current		$3.0V \le V_{CC} - V_O \le 10V$	±250	±400		mA
A _{VS}	Large Signal Voltage 0	ain	$R_L \ge 50\Omega, V_O = \pm 10V$	25	200		V/m
TR	Transient Response	Rise Time	$R_{L} = 50\Omega, A_{V} = 1.0$		300		ns
		Overshoot			10		%
SR	Slew Rate	1	$R_{L} = 50\Omega, A_{V} = 1.0$		0.5	1	V/µ
BW	Bandwidth		$A_V = 1.0$		1.0		мн
			· ·				
	ving specifications apply f	or $0^{\circ} \leq T_{J} \leq +$					
V _{IO}	Input Offset Voltage		$R_S \le 10 \ k\Omega$			10	m\
IIO	Input Offset Current					100	nA
I _{IB}	Input Bias Current					400	nA
CMR	Common Mode Rejection		$R_{S} \le 10 \text{ k}\Omega$	70	100		dE
PSRR	Power Supply Rejection Ratio		$R_S \le 10 \text{ k}\Omega$	80	100		dE
A _{VS}	Large Signal Voltage Gain		$R_L \ge 50\Omega, V_O = \pm 10V$	25	200	-	V/m
V _{OP}	Output Voltage Swing		$R_L = 50\Omega$	±10	±12.5		V
			V-, the absolute maximum input volta ailable for LM759H.	age is equal to the s	supply voltage.		

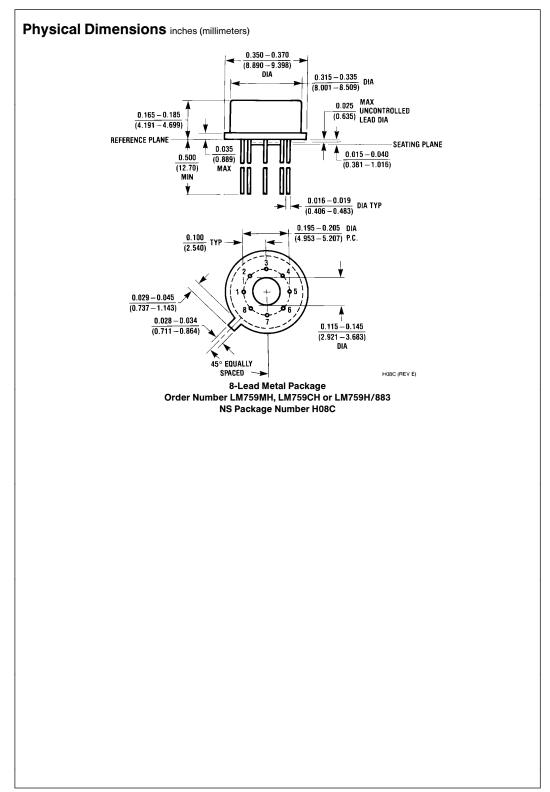

Mounting Hints

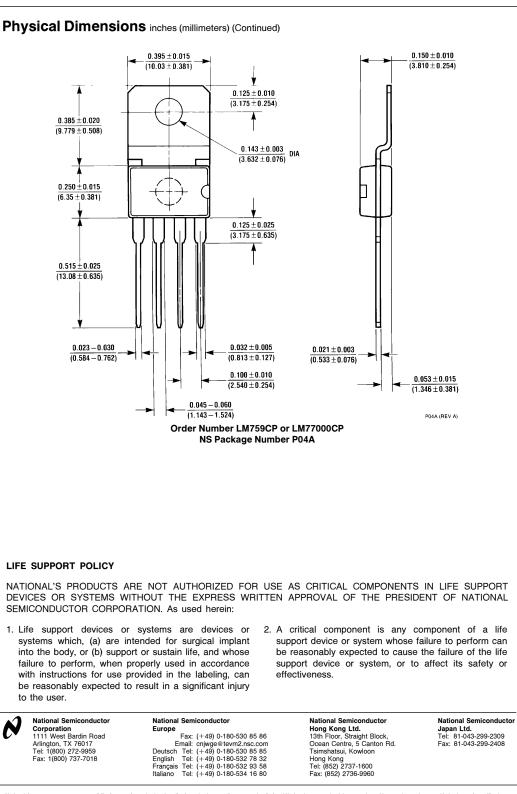

Metal Can Package (LM759CH/LM759MH)


The LM759 in the 8-Lead TO-99 metal can package must be used with a heat sink. With \pm 15V power supplies, the LM759 can dissipate up to 540 mW in its quiescent (no load) state. This would result in a 100°C rise in chip temperature to 125°C (assuming a 25°C ambient temperature). In order to avoid this problem, it is advisable to use either a slip on or stud mount heat sink with this package. If a stud mount heat sink is used, it may be necessary to use insulating washers between the stud and the chassis because the case of the LM759 is internally connected to the negative power supply terminal.


Plastic Package (LM759CP/LM77000CP)


The LM759CP and LM77000CP are designed to be attached by the tab to a heat sink. This heat sink can be either one of the many heat sinks which are commercially available, a piece of metal such as the equipment chassis, or a suitable amount of copper foil as on a double sided PC board. The important thing to remember is that the negative power supply connection to the op amp must be made through the tab. Furthermore, adequate heat sinking must be provided to keep the chip temperature below 125°C under worst case load and ambient temperature conditions.





National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.