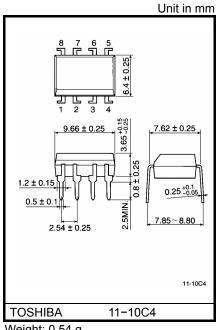
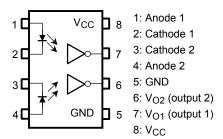
TOSHIBA Photocoupler GaAlAs Ired & Photo IC


TLP2630

Digital Logic Isolation Tele-Communication **Analog Data Equipment Control** Microprocessor System Interface

The TOSHIBA TLP2630 dual photocoupler consists of a pair of GaAlAs light emitting diode and integrated high gain, high speed photodetector.


The output of the detector circuit is an open collector, schottky clamped transistor. This unit is 8-lead DIP.

- Input current threshold: IF = 5mA(max.)
- LSTTL/TTL compatible: 5V supply
- Switching speed: 10MBd(typ.)
- Guaranteed performance over temperature: 0~70°C
- Isolation voltage: 2500V_{rms}(min.)
- UL recognized: UL1577, file no. E67349

Weight: 0.54 g

Pin Configuration (top view)

Truth Table (positive logic)

Input	Output
Н	L
L	Н

A 0.01 to 0.1µF bypass capacitor must connected between pins 8 and 5 (see Note 1).

Schematic

Absolute Maximum Ratings (no derating required up to 70°C)

Characteristic		Symbol	Rating	Unit
	Forward current(each channel)	lF	20	mA
LED	Pulse forward current (each channel)*	I _{FP}	30	mA
	Reverse voltage(each channel)	V _R	5	V
	Output current(each channel)	ΙO	16	mA
'n	Output voltage(each channel)	Vo	-0.5~7	V
Detector	Supply voltage (1 minute maximum)	V _{CC}	7	V
	Output collector power dissipation(each channel)	Po	40	mW
Oper	ating temperature range	T _{stg}	-55~125	°C
Stora	ge temperature range	T _{opr}	-40~85	°C
Lead	soldering temperature (10 s) (Note 1)	T _{sol}	260	°C
Isolat	tion voltage (AC, 1 min., R.H.≤ 60%, Note 3)	BV _S 2500		Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Recommended Operating Conditions

Characteristic	Symbol	Min.	Тур.	Max.	Unit
Input current, low level, each channel	I _{FL}	0	_	250	μΑ
Input current, high level, each channel	I _{FH}	6.3*	_	15	mA
Supply voltage**, output	V _{CC}	4.5	5	5.5	V
Fan out(TTL load, each channel)	N	_	_	8	
Operating temperature	T _{opr}	0	_	70	°C

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

^{*} t ≤ 1 msec duration.

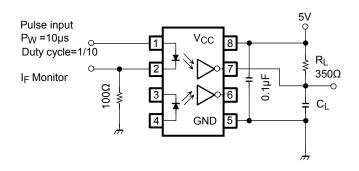
^{* 6.3}mA is a guard banded value which allows for at least 20% CTR degradation. Initial input current threshold value is 5.0mA or less.

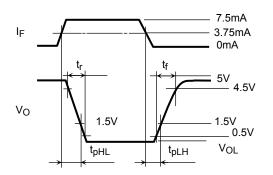
^{**}This item denotes operating ranges, not meaning of recommended operating conditions.

Electrical Characteristics (Ta = $0\sim70$ °C, unless otherwise noted)

Characteristic	Symbol	Test Condition		Min.	Typ.*	Max.	Unit
Input forward voltage (each channel)	VF	I _F = 10mA, Ta = 25°C		_	1.65	1.75	V
Input diode temperature coefficient(each channel)	ΔV _F / ΔTa	I _F = 10mA		_	-2.0	_	mV / °C
Input reverse breakdown voltage(each channel)	BV _R	I _R = 10μA, Ta = 25°C		5	_	_	V
Input capacitance (each channel)	C _T	V _F = 0, f = 1MHz			45	_	pF
High level output current (each channel)	ІОН	$V_{CC} = 5.5V, V_{O} = 5.5V$ $I_{F} = 250\mu A$		_	1	250	μA
Low level output voltage (each channel)	V _{OL}	V_{CC} = 5.5V, I_F = 5mA I_{OL} (sinking) = 13mA		_	0.4	0.6	V
High level supply current (both channels)	Іссн	V _{CC} = 5.5V, I _F = 0		_	14	30	mA
Low level supply current (both channels)	ICCL	V _{CC} = 5.5V, I _F = 10mA		_	24	36	mA
Isolation voltage	R _S	V _S = 500V, R.H.≤ 60%	(Note 3)	_	10 ¹⁴	_	Ω
Capacitance(input-output)	CS	f = 1MHz	(Note 3)	_	0.6	_	pF
Input-input leakage current	I _{I-I}	R.H. \leq 60%, t = 5s V _{I-I} = 500V	(Note 6)	_	0.005	_	μA
Resistance(input-input)	R _{I-I}	V _{I-I} = 500V	(Note 6)		10 ¹¹	_	Ω
Capacitance(input-input)	C _{I-I}	f = 1MHz	(Note 6)	_	0.25	_	pF

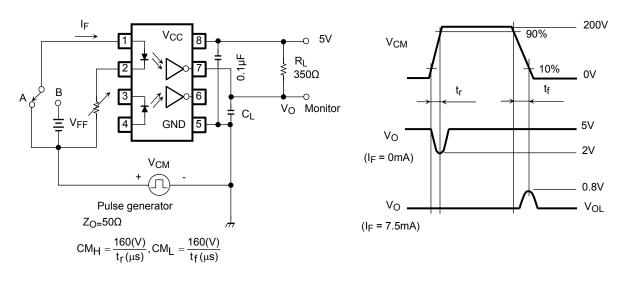
^{*} All typical values are at V_{CC} = 5V, Ta = 25°C.

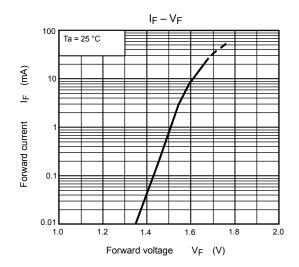

Switching Characteristics (Ta =25°C, V_{CC}=5V)

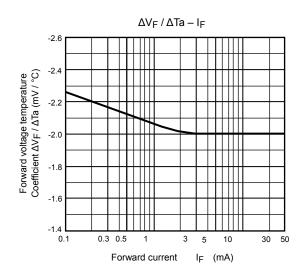

Characteristic	Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit
Propagation delay time to low output level	t _{pHL}	1	$I_F = 0 \rightarrow 7.5 \text{mA}, R_L = 350\Omega$ $C_L = 15 \text{pF} \text{ (each channel)}$	_	60	75	ns
Propagation delay time to high output level	t _{pLH}	1	I_F = 7.5mA \rightarrow 0, R_L = 350 Ω C_L = 15pF (each channel)	_	60	75	ns
Output rise a time,output fall time(10~90%)	t _r ,t _f	1	$I_F = 0 \rightleftharpoons 7.5 \text{mA}, R_L = 350\Omega$ $C_L = 15 \text{pF} \text{ (each channel)}$	_	30	_	ns
Common mode transient immunity at high output level	CM _H	2	$\begin{split} I_F &= 0, R_L = 350\Omega \\ V_{CM} &= 200V \\ V_{O}(\text{min.}) &= 2V \\ & (\text{each channel, Note 4}) \end{split}$		200	ı	V / µs
Common mode transient immunity at low output level	CML	2	$\begin{split} I_F &= 7.5 \text{mA}, \ R_L = 350 \Omega \\ V_{CM} &= 200 V \\ V_{O}(\text{max.}) &= 0.8 V \\ & (\text{each channel, Note 5}) \end{split}$		-500		V / µs

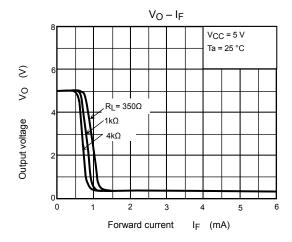
- (Note 1) 2mm below seating plane.
- (Note 2) The V_{CC} supply voltage to each TLP2630 isolator must be bypassed by a 0.01 μ F capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package V_{CC} and GND pins each device.
- (Note 3) Device considered a two–terminal device: Pins 1, 2, 3 and 4 shorted together, and pins 5, 6, 7 and 8 shorted together.
- (Note 4) CM $_{\rm H}$ -the maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the high state(i.e., V $_{\rm OUT}$ > 2.0V)
- (Note 5) CM_L·the maximum tolerable rate of fall of the common mode voltage to ensure the output will remain in the low output state(i.e., V_{OUT} > 0.8V)

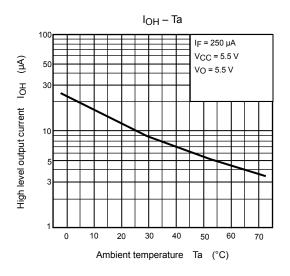
 Measured in volts per microsecond(V / µs).
- (Note 6) Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

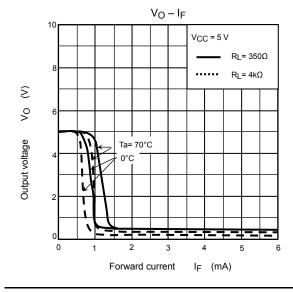

Test Circuit 1. t_{pHL} And t_{pLH}

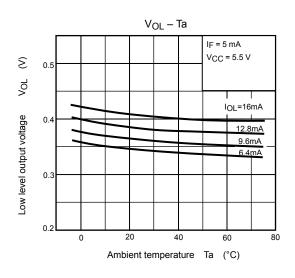


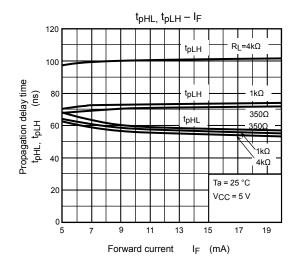

* C_L is approximately 15pF which includes probe and stray wirng capacitance.

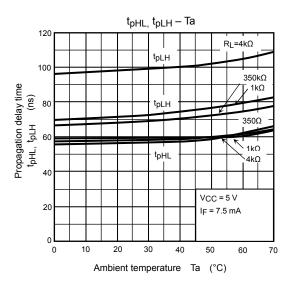

Test Circuit 2. Transient Immunity And Typical Waveforms.

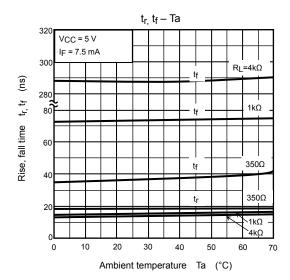



* C_L is approximately 15pF which includes probe and stray wirng capacitance.









RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.